First Observations at PHENIX of W Production from Polarized pp Collisions at RHIC

Dave Kawall, RIKEN-BNL Research Center and University of Massachusetts Amherst on behalf of the PHENIX Collaboration

Motivation for Spin Physics with Ws at RHIC

- Key measurement of spin program : flavor separated, polarized PDFs $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$
- Semi-inclusive polarized DIS experiments (SMC, HERMES, COMPASS) have made such measurements
- ullet STAR and PHENIX can do it exploiting maximal-parity violation in W production in polarized pp collisions
 - Measurements made at high scale $(M_W^2 > 6000 \text{ GeV}^2)$
 - ullet No uncertainty from fragmentation (couplings of W well known), no higher twist effects

- Unpol. PDFs known to about 10%
- Theoretical uncertainties small (NLO+resummation)
- Robust extraction of $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$
- Can also measure ratio $\bar{u}(x)/\bar{d}(x)$

 \leftarrow D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008) (At $Q^2=10~{\rm GeV^2}$)

Motivation for Spin Physics with Ws at RHIC

- ullet Sensitivity to polarized PDFs by taking difference in W production rates when incoming proton helicity changes sign
- (a) u always left-handed : Δu probed in polarized proton (b) \bar{d} always right-handed : $\Delta \bar{d}$

probed in polarized proton

- Proton helicity ="-" $\frac{d^{+}(x_{1})}{d^{+}(x_{2})}$
- Proton helicity ="+" $\overline{d}_{+}^{+}(x_{1})$ $u(x_{2})$

probed (From Bunce $et\ al.$ Annu.

 \bullet For W^- , $\Delta \bar{u}(x)$ and $\Delta d(x)$

(From Bunce et al. Annu. Rev. Nucl. Part. Sci. **50** 525 (2000)).

Central arm measurement $pp \to W \to e$ probes PDFs at :

$$\langle x_{1,2} \rangle \approx \frac{M_w}{\sqrt{s}} \exp(\pm y_W) \approx 0.16$$

Motivation for Spin Physics with Ws at RHIC

(From RHIC Spin Plan 2008)

- W^- : $A_L \propto \Delta \bar{u}(x_1)d(x_2)(1-\cos\hat{\theta})^2 \Delta d(x_1)\bar{d}(x_2)(1+\cos\hat{\theta})^2$
- W^+ : $A_L \propto \Delta \bar{d}(x_1)u(x_2)(1+\cos\hat{\theta})^2 \Delta u(x_1)\bar{d}(x_2)(1-\cos\hat{\theta})^2$
- \bullet For W^+ , $-0.35 < \eta_e < 0.35$, measure combination of $\Delta \bar{d}$ and Δu
- \bullet For W^- , $-0.35 < \eta_e < 0.35$, measure combination of $\Delta \bar{u}$ and Δd
- ullet y_W can not be determined unambiguously from y_e^{lab} at mid-rapidity :

$$y_e^{lab} = \hat{y}_e + y_W$$
, where $\hat{y}_e = \frac{1}{2} \ln \left[\frac{1 + \cos \hat{\theta}}{1 - \cos \hat{\theta}} \right]$, $p_T^e \approx \frac{M_W}{2} \sin \hat{\theta} = \frac{M_W}{2} \sin(\pi - \hat{\theta})$

ullet Irreducible uncertainty in sign, $P_T^W
eq 0$ either, extraction of $\Delta \bar{u}(x), \ \Delta \bar{d}(x)$ not trivial

RHIC: World's Only Polarized Proton Collider

- Run 09 : Longitudinally polarized pp at $\sqrt{s}=500$ GeV/c (Mar.17-Apr.13, 2009)
- Peak Luminosity in 2009 : $\mathcal{L} = 6 \times 10^{31} \text{ cm}^{-1} \text{s}^{-1}$ ($\mathcal{L}_{Design} = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)
- Average Polarization : $\langle P \rangle = 0.39 \pm 0.04$ (measured with C CNI polarimeter, calibrated with H jet)
- Integrated Luminosity for this analysis : $\int \mathcal{L}dt \approx 17.2 \text{ pb}^{-1}$

• Up to 120 bunches in each ring, crossing every 106 ns, helicity of pairs ++,+-,-+,-- alternates rapidly

PHENIX Central Arm Spectrometers

Electromagnetic calorimeter (EMCal) finely segmented :

$$\Delta \phi \times \Delta \eta \approx 0.01 \times 0.01$$

ullet Calibrated with $M_{\gamma\gamma}$ of π^0 at high p_T

- \Rightarrow Focus on $\vec{p}p \Rightarrow W^{\pm} + X \Rightarrow e^{\pm} + X'$
 - Detect high E e^{\pm} in central arms of PHENIX
 - Acceptance of each arm : rapidity $|\eta| < 0.35$ (70 < θ < 110), $\Delta \phi = \pi/2$
 - Vertex cut : |z| < 30 cm

- Tracking: Charged tracks measured in Drift Chamber (DC) and Pad Chamber(PC1)
- $\int \vec{B} \cdot d\vec{l} = 0.78$ Tesla-meters

Find the Ws

- Can't identify $W \Rightarrow e + \nu_e$ definitively on event-by-event basis
- Like UA1 and UA2: looking for excess of events above background:
 (R. Ansari et al. (UA2 Collaboration), Phys. Lett. B186, 440 (1987))

Find the Ws

Backgrounds: Reducible and Irreducible

- Can't identify $W\Rightarrow e+\nu_e$ definitively on event-by-event basis : rely on excess of events over background
- Reducible Backgrounds : Collision-independent
 - Cosmic rays
 - Beam related backgrounds (fragments, halo, scattering upstream)
 - Timing cuts reduce by more than factor of 5
- Backgrounds : Collision-dependent
 - π^0 , $\eta \Rightarrow \gamma \gamma$, or direct- γ : conversion $\gamma \to e^+ e^-$ yields cluster + matching track
 - $h^{\pm}+$ hadronic shower in EMCal : cluster + matching track
 - ullet π^0 or direct- γ with accidentally matching track from other fragments
- Irreducible Backgrounds
 - Irreducible in the sense they pass our cuts (high energy cluster+matching track)
 - Charm, bottom $\Rightarrow e^{\pm}$ +anything
 - Other W decays : $W \Rightarrow \tau + \nu_{\tau} \Rightarrow e\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}$, detect e
 - $Z/\gamma^* \Rightarrow e^+ + e^-$, detect one e, other outside acceptance
 - $Z \Rightarrow e^+ + e^-$ rate significant compared to $W^- \Rightarrow e^- + \bar{\nu}_e$
 - ullet Z production comes with a small parity-violating asymmetry

Analysis Strategy

- Trigger : EMCal 4x4b tower sum
 - Nominal threshold 7.5 GeV
 - Fully efficient above 12 GeV
 - No vertex requirement
- For high energy cluster in trigger module: look for matching track in DC and PC1
- Extrapolate track back : apply vertex cut $|z| \le 30$ cm
- Peak collision rate $\geq 2.5 \text{ MHz}$
- ullet Crossing rate pprox 10 MHz
- \Rightarrow Significant prob. of ≥ 1 collision/crossing
 - High collision rate: Pileup in calorimeter and tracking detectors
 - ullet Timing cut based on event time in EMCal : -10 ns < $T_{
 m event}$ < 20 ns; helps removes background from pileup and cosmics

Charge Separation : e^+ or e^- ?

- Must distinguish $W^+ \Rightarrow e^+ + \nu_e$ from $W^- \Rightarrow e^- + \bar{\nu}_e$
- Momentum and charge determined in DC

- Angle at DC wrt infinite momentum track : $\alpha \approx 100 \text{ mrad } / \text{ q} \times \text{P[GeV/c]}$
- 40 GeV/c track $\Rightarrow \alpha \approx$ 2.5 mrad, $\delta \alpha \approx 1.1$ mrad

- Acceptance cuts on DC; remove tracks too close to wires to resolve L/R ambguities (15%)
- ⇒ Charge sign determined with high confidence
 - Momentum resolution $\delta \alpha / \alpha \approx \delta p / p$
 - At 40 GeV/c, $\delta p \approx 40\% \times p$
 - \bullet Poor momentum resolution : only loose cuts on E/p possible

Charge Separation : DC Performance

- ullet 17 zero $ec{B}$ runs were taken : all tracks nominally have bend angle lpha=0
- ullet Beam shifts in (x,y) affect determination of lpha
 - Use $\Delta \alpha$ to measure offset of beam wrt DC
- ullet Correction to lpha from motion of beam center is applied (beam shifts $\pm 300~\mu{\rm m}$)
- Note that beam $\sigma_x, \ \sigma_y \ \text{are} \approx 200 \ \mu \text{m}$

Zero-field run showing $\delta \alpha$ of tracks

Track bend angle lpha of DC versus $p_T^{
m EMCal}$

• $\delta \alpha \approx 1.1$ mrad \Rightarrow charge separation is robust ($\lesssim 2\%$ of e^+ contamination in e^-)

Matching of EMCal Clusters with Track

- ullet $\Delta\phi$ between EMCal cluster and track extrapolated from DC and PC1
- Keep candidates with $|\Delta\phi| < 0.01$ radians (no match required in Δz with BBC)
- Contribution from accidental track-cluster matches extracted from tails
- Accidental match fraction consistent with PYTHIA+PISA simulation

Matching of EMCal Clusters with Track with E/p cut

- Traditional e identification cuts not so useful at these high energies
 - ullet RICH threshold of 4.7 GeV/c for π^\pm : requiring RICH won't eliminate high E hadrons
 - ullet Shower shape cut normally gives imes 2 hadron rejection at lower energy, not easy to estimate at high E
 - ullet Best cut left is E/p but loose to keep signal, reflect fact that p resolution is poor

- ullet $\Delta\phi$ [rads] between EMCal cluster and track extrapolated from DC and PC1, for cluster > 10 GeV
- Black curve : without E/p cut
- ullet Red curve : with E/p < 3 cut, significant reduction in accidental cluster-track matches

Analysis Results : Raw Spectrum + Matching Tracks

- EMCal clusters after fiducial cut, bad tower cut, versus energy
- Matching track in DC and PC1 found, $|z| \leq 30$ cm

- EMCal clusters after fiducial cut, bad tower cut, versus energy
- Matching track in DC and PC1 found, $|z| \leq 30$ cm
- ullet Cut on event time : -10 ns < T_{Event} < 20 ns, reduces cosmics, pileup
- E/p < 2

W Event in PHENIX Central Arms

ullet W event in PHENIX, after many years !

Signal and Background Expectations

Events with Positive Charged Track

Events with Negative Charged Track

- ullet W prediction from RHICBOS (P. Nadolsky and C.P. Yuan)
- QCD backgrounds high: rely on low photon conversion rate, low hadronic shower rate
- Charm+Bottom $\rightarrow e$ +anything relatively small
- $W \Rightarrow \tau + \nu_{\tau} \Rightarrow e\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}$, high endpoint, but many body decay
- Z significant background for W^- measurement,

Comparison of Data with Background Estimation

To determine background under signal region (30-50 GeV) :

- \bullet Take measured $\pi^0 + \gamma$ spectrum \times conversion prob + accidental matching track \otimes acceptance
- ullet Add charged hadrons (NLO) \otimes detector response (GEANT) + e^\pm from FONLL c/b decays
- ullet Normalize h^\pm component so total background matches data in range 10-20 GeV
- Black histogram : background estimate; largest component from $\pi^0 + \gamma$, h^{\pm} slightly less

Extracting the Parity-Violating Single Spin Asymmetry ${\cal A}_L^W$

- \bullet Best measurement of A_L^W requires different cuts than best measurement of $\sigma(pp\Rightarrow W\Rightarrow e\nu)$
- ullet For A_L^W want to increase purity of signal wrt background (which would otherwise dilute asymmetry)
- Spin-independence of cuts important, determining absolute efficiency of cut to high precision is not
- ullet Use an isolation cut since physics predicts e candidates from W are isolated :
 - Require (sum of EMCal energy for neutral particle) + (sum of momentum) overlapping cone about e candidate of 0.5 rads < 2 GeV
 - (minimum E > 0.15 GeV, $0.2 < p_T < 15$ GeV/c, latter reduces fake tracks)
 - ullet Cut on DC tracks |lpha| < 1 mrad to reduce charge mis-identification
- Net effect is to keep > 70% of signal, reduce background approximately factor of 5

- Black points = before isolation cut
- Red points = after isolation cut
- Background reduced by factor of 5

- Black points = before isolation cut, Red points = after isolation cut
- Net effect is to keep > 70% of signal, reduce background by $\times 5$
- ullet For asymmetry analysis, define Background Region (12-20 GeV/c)
- For asymmetry analysis, define Signal Region (30-50 GeV/c)

Extracting the Parity-Violating Single Spin Asymmetry ${\cal A}_L^W$

ullet Denoting positive beam helicity by + and negative by -, A_L^W is defined :

$$A_L^W \equiv \frac{\sigma(\overrightarrow{p}\,p \Rightarrow W) - \sigma(\overleftarrow{p}\,p \Rightarrow W)}{\sigma(\overrightarrow{p}\,p \Rightarrow W) + \sigma(\overleftarrow{p}\,p \Rightarrow W)}$$

$$\approx \frac{1}{P} \frac{N^+(e)/\mathcal{L}^+ - N^-(e)/\mathcal{L}^-}{N^+(e)/\mathcal{L}^+ + N^-(e)/\mathcal{L}^-}$$

- ullet Here N is the electron yield, ${\mathcal L}$ is integrated luminosity, P is luminosity-weighted polarization
- Get one measurement treating "blue" beam as polarized, averaging over "yellow" beam
- Get second measurement treating yellow beam as polarized, averaging over blue beam
- ullet Ideally we'd do this as function of $\eta(e)$ but statistics are too limited
- ullet Going from $\eta(e)$ to $\eta(W)$ from central arm measurements best done in global fit
- Asymmetry extracted using all helicity combinations with maximum-likelihood method

Extracting the Parity-Violating Single Spin Asymmetry ${\cal A}_L^W$

- Can extract asymmetry using all helicity combinations with maximum-likelihood method
- \bullet Denoting beam polarization by P, raw asymmetry by ϵ so $\epsilon = AP$:

$$\sigma^{++} \approx (1 + AP_B)(1 + AP_Y)\sigma$$
 $\sigma^{+-} \approx (1 + AP_B)(1 - AP_Y)\sigma$
 $\sigma^{-+} \approx (1 - AP_B)(1 + AP_Y)\sigma$
 $\sigma^{--} \approx (1 - AP_B)(1 - AP_Y)\sigma$

ullet Use likelihood function to find best value of raw asymmetry ϵ

Likelihood scan of (ϵ,σ) for $30 < p_T < 50$ GeV for e^+

Projection of (ϵ, σ) onto ϵ axis for $30 < p_T < 50$ GeV for e^+

Parity-Violating Single Spin Asymmetry $A_L(\vec{pp} \to W^+ \to e^+)$

- Preliminary result, using $P_B = 0.38 \pm 0.04$ and $P_Y = 0.40 \pm 0.04$ ($\delta P/P = 9.2\%$)
- ullet Raw asymmetry in background region (12-20 GeV/c) consistent with 0 : $\epsilon_{
 m raw}^{
 m Bkgd}=0.035\pm0.047$
- ullet Raw asymmetry in signal region (30-50 GeV/c) inconsistent with 0 : $\epsilon_{
 m raw}^{
 m Signal} = -0.29 \pm 0.11$
- ullet $A_L = rac{1}{P} imes \epsilon_{
 m raw} imes D$, correct for dilution of A_L by Z and QCD background ($D=1.11\pm0.04$)

$$A_L(\vec{p}p \to W^+ \to e^+) = -0.83 \pm 0.31$$

Near Term Future : $\sqrt{s} = 500$ GeV pp Run in 2011

- Expectation is for $\int \mathcal{L} dt = 50 \text{ pb}^{-1}$ (no vertex cut, $\approx 25 \text{ pb}^{-1}$ after cut), P = 50%
- Major upgrade of muon arms for $pp \to W \to \mu + \nu_{\mu}$ in forward region (See Yoshi Fukao's talk tomorrow)
- Some changes to central arm during shutdown: HBD removed, Si VTX installed (!), maintenance on DC and PC
- Increased rate of conversions expected, ≈ 3 (but can eliminate many with cuts)
- Acceptance partially reduced for |z| > 20 cm by VTX components
- Expect improvements in efficiency of isolation cut
- DC and PC maintenance should lead to increased detector active area
- \Rightarrow Factor 2 reduction in δA_L over Run 9

- $A_L(\vec{p}p \to W^- \to e^-)$ challenging measurement
- ullet Will require 300+ pb $^{-1}$ and 70% polarization if we can get it, and optimal detector performance

Summary and Outlook

- ullet Developed analysis techniques to isolate W o e signal above backgrounds
- ullet Clear evidence for $W^\pm \to e^\pm$ at $|\eta| < 0.35$ in PHENIX central arms
- Preliminary determination of single-spin parity-violating asymmetry : $A_L^W(\vec{p}p \to W^+ \to e^+) = -0.83 \pm 0.31$
- ullet Analysis underway for cross-section estimates, final $A_L^{W^\pm}$ determinations
- Upgrades will help refine analysis, add acceptance and new physics channels :
 - Si Barrel vertex detectors in PHENIX central arms
 - Muon arms : RPCs + muon trigger upgrade : $W \to \mu$ signal $1.2 < |\eta_{\mu}| < 2.2$
- C-AD getting closer to design luminosity at $\sqrt{500}$ GeV, $\approx 40\%$ polarization
- ullet Will need 300+ pb $^{-1}$ integrated luminosity, 60% polarization to meet goals of program